
Handwriting Recognition using Convolution Neural
Network and Hidden Markov Models

Akruti Kushwaha 201301137
Srivenkata N Mounika Somisetty 201330076

Statistical Methods in AI
Group No. 16

Abstract

Recognizing handwritten text means translating a graphical representation of text into
a textual output. Handwriting recognition is used everywhere from everyday things
like smart phones to more advanced applications such as signature recognition. This
report describes a procedure to develop a handwritten text recognition system based
on Convolution Neural Networks and Hidden Markov Models. The application of these
two methods in this area has been done previously with good results. The conclusions
of this report show the usefulness of these two methods and what they can add to this
area of research.

1 Introduction

Offline handwritten word recognition is the conversion of an image into text. Com-
pared to many computer vision problems, the images of text are simple. We can often
binarize them, and the task consists of recognizing the shape of the ink. The main
challenges involved in the recognition are the segmentation, the different handwriting
styles (slope, print, cursive), touching characters, alignment etc. A common technique
used to identify a given handwritten input, is to extract characters, and the extract
features for each of these characters. With these features, a classifier such as an Artifi-
cial Neural Network, Convolution Neural Network, SVM etc is trained to recognize the
input character. Following this, the HMM module is used to help improve the accuracy
of the prediction. It, in a way, uses the spatial locality of the characters around it to
help predict what the word may have been, thus trying to improve the accuracy of
prediction of the whole word, and not just the characters. This, however, is entirely
dependent on the dataset available and the words in the dictionary of the HMM. As
described in this report, we use a trained CNN and HMM to recognize a subset of
handwritten words, specifically, due to dataset limitations, printed words written with
capital letters.

1



2 Dataset

An attempt was made to find a dataset with handwritten text segmented till charac-
ter level, but no such dataset was found. The datasets that were found, were only
segmented till word level, and thus would require advanced character segmentation
algorithms and the classifier would still yield an output dependent on the accuracy
of this character segmentation algorithm. Figure 1 shows a sample from one of the
datasets found (IAM). To get good results from images as such would required a lot
of pre-processing. Therefore, the dataset finally used was a small dataset made by [1].
The dataset contains 100 examples for every capital letter in the Latin alphabet. The
generator used to create the dataset creates random errors in the words given as input.
Thus, this provides us a small estimate of actual errors. This dataset is obviously not
usable for practical purposes, but it is good enough to test the classifier.

3 Method

Initially, a Convolution Neural Network was trained using the training samples in the
above mentioned dataset. Following this, a Hidden Markov Model generator was also
trained and the probability matrix required for word prediction was acquired. Next, a
pipeline was built to allow any input image to be classified. The pipeline is described in
detail below. Initially the image is pre-processed and then sent to the CNN and then,
the HMM.

3.1 Pre-processing

The input image of text was initially pre-processed to accommodate multiple lines of
text each containing multiple words. This pre-processing was in hopes of making the
system invariant to different kinds of inputs. Initially, the images are binarized, dilated
(if necessary) and re-sized.

3.1.1 Line Segmentation

Line segmentation was done using the vertical projection profile method[2].In this
method, initially, the input is rotated by 90 degrees and the sum of each column is
found. The distinct peaks in the graph plotted correspond to the white spaces between
lines while the minima correspond to the lines. The projection function was smoothed
using a Gaussian (low pass) filter to get rid of the false local maxima and minima. The
local maxima is found using first derivative of the projection function. These maximas
indicate the positions of divisions into various lines. This technique is meant to be
robust to variations in size of lines.

2



Figure 1. Sample image from IAM dataset with projection profile given below.

Figure 2. The first image is the raw vertical projection profile, the second is the
smoothed counterpart.

3



3.1.2 Word Segmentation

Each line is converted to the corresponding blob representation as described in detail
in [2]. This is achieved by convolving each line with the Laplacian of an anisotropic
Gaussian filter. This filter has separate σ values for the x and y direction, allowing us
to treat them differently.

Gθ(u, v;σx, σy, θ) = 1√
2πσx

e
−

1
2
x2

σx2 ∗ 1
√2πσy

e
−

1
2
y2

σy2

The parameters are chosen based on previous analysis. As indicated by the paper [2],
the ratio σx/σy is best between 3-5, σy = k∗ lineheight. The size of the Gaussian kernel
was also experimented with. Each blob is a connected component corresponding to a
particular word. Connected component analysis was done on the blobs to segment them.

Figure 3. The various blob images for different kernel sizes

4



Figure 4. Word-segmented Image

3.1.3 Slant Correction

Slope correction [3] is first performed on the word images to remove the variability in
the slope of writing. The slope of the word is defined as the slope of the writing with
respect to the vertical. The underlying assumption used to calculate the slope is that
words are normally written with a consistent slope, thus the global slope of the word can
be calculated.The dominant slope of the word is found from the slope corrected word
which gives the minimum entropy of a vertical projection histogram. Where entropy is
defined as,

H = −
N∑
j=1

pjlogpj

The vertical projection histogram is calculated as mentioned above in line segmen-
tation. The distribution is then normalized to have a total area = 1. The basic idea
can be demonstrated using a vertical line as an example. When the line is slanted at
an angle, it will have a low flat wide distribution whose width is l cosα , where l is the
length of the line and α is the is angle of the line to the horizontal axis. When the line
is upright, the distribution will now be tall and narrow, which will result in a lower
entropy measure than for the low flat distribution of the slanted line. Thus, the en-
tropy gives a measure of the uprightness of the word The vertical projection histogram
is calculated by first correcting the binary image by an arbitrary angle i, using sheer
transformation.The correction angle, αm, was found from the minimum entropy. The
slope of the grey-scale word image is then corrected using αm and the resulting in a
slope corrected image.

5



3.1.4 Character Segmentation

Due the the relative uniformity of spaces between characters in the dataset, character
segmentation can also be done using the vertical projection profile similar to that done
for line segmentation, varying the parameters chosen for the low pass filter. After
segmentation, each character is re-sized to 28x28 size and saved for input to the neural
network for classification.

3.2 Convolutional Neural Network

The convolutional neural network (CNN or ConvNet) is a type of feed forward arti-
ficial neural network where the individual neurons are tiled in such a way that they
respond to overlapping regions in the visual field. They were inspired by biological
processes and are variations of multilayer perceptrons designed to use minimal amount
of preprocessing having wide applications in image and video recognition.

3.2.1 Backpropagation

When doing propagation, the momentum and weight decay values are chosen to reduce
oscillation during stochastic gradient descent.

3.2.2 Different types of layers:

Convolutional layer
In a convolutional neural net, the parameters of each convolution kernel are trained by
the backpropagation algorithm. There are many convolution kernels in each layer, and
each kernel is replicated over the entire image with the same parameters. The function
of the convolution operators is to extract different features of the input. The capacity
of a neural net varies, depending on the number of layers. The first convolution layers
will obtain the low-level features, like edges, lines and corners. The more layers the
network has, the higher-level features it will get.

ReLU layer
ReLU is the abbreviation of Rectified Linear Units. This is a layer of neurons that
use the non-saturating activation function . It increases the nonlinear properties of the
decision function and of the overall network without affecting the receptive fields of the
convolution layer. Other functions are used to increase nonlinearity. For example the
saturating hyperbolic tangent, and the sigmoid function. Compared to tanh units, the
advantage of ReLU is that the neural network trains several times faster.

Pooling layer
In order to reduce variance, pooling layers compute the max or average value of a par-
ticular feature over a region of the image. This will ensure that the same result will
be obtained, even when image features have small translations. This is an important

6



operation for object classification and detection.

Dropout method
Since a fully connected layer occupies most of the parameters, it is prone to over-
fitting. The dropout method is introduced to prevent overfitting. At each training
stage, individual nodes are either ”dropped out” of the net with probability 1-p or kept
with probability p, so that a reduced network is left; incoming and outgoing edges to a
dropped-out node are also removed. By avoiding training all nodes on all training data,
dropout decreases overfitting in neural nets. The method also significantly improves
the speed of training. This makes model combination practical, even for deep neural
nets.

Loss layer
It can use different loss functions for different tasks. Softmax loss, used in our model, is
used for predicting a single class of K mutually exclusive classes. Sigmoid cross-entropy
loss is used for predicting K independent probability values in [0,1]. Euclidean loss is
used for regressing to real-valued labels [-inf,inf]

Figure 5. Example of CNN architecture

3.3 Architecture

The model of a CNN can be organized practically using two major methods - graphs
or sequential. For the purpose of character recognition, we use the sequential model of
a LeNet 5 architecture which can be visualized as a stack of 8 layers. [4]

1. The initial layer is a convolutional layer of size 32x32 even though the input
images are of size 28x28. The reason for this is, that the relevant features are
then guaranteed to be contained in all feature maps and not get lost because
they are near the boundary. So convolutional filters of size 32 are used with a
convolution kernels of size 3.

2. The next layer is the activation layer that uses a ReLu(RectifiedLinearUnits)
layer that increases the nonlinear properties of the decision function and of the
overall network without affecting the receptive fields of the convolution layer.

7



3. The maxpooling layer, in charge of downsampling the spatial dimensions of the
input, takes 2x2 receptive fields in order to reduce variance. Note that this dis-
cards exactly 75% of the activations in an input volume (due to downsampling
by 2 in both width and height).

4. The dropout layer randomly sets a fraction 0.25 of input units to 0 at each update
during training time, which helps prevent overfitting.

5. The flatten layer converts the n dimensional input to 1 dimension.

6. This is followed by another activation and dropout layer.

7. The final layer, the loss layer, uses Softmax which is used for predicting a single
class of K mutually exclusive classes

The model is compiled using a loss function, categorical crossentropy, which is a mul-
ticlass logloss and adadelta as the optimization function, which is a per-dimension
learning rate method for gradient descent.

3.4 Hidden Markov Model

3.4.1 Overview

A hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with unobserved (hidden) states. Of-
ten pattern recognition problems like the one at hand, have an element of uncertainty
and randomness in the form of error from the source. Probabilistic models are used
to increase accuracy in such a scenario. As such, we use the Hidden Markov Model
to increase upon the accuracy of the output we obtain from the Convolution Neural
Network. The Hidden Markov Model treats data as a sequence of observations, while
using hidden states that are connected to each other by transition probabilities.

An HMM is characterized by the following:

1. N, the number of states in the model. M, the number of distinct observation
symbols.

2. A, the transition probability distribution.

3. B, the observation symbol probability distribution for each state.

4. π, the initial state state distribution.

In contrast to a knowledge-based approach, HMMs use statistical algorithms that can
automatically extract knowledge from samples. Hence, the performance of the model
can be enhanced by adding more samples.

8



3.4.2 Classifiers

We utilize the HMM as a function that takes a string of characters as input and outputs
a word. For this purpose, two kinds of word classifiers have been implemented. [1]

1. Forward-classifier

2. Viterbi-classifier

Figure 6. A flowchart that shows the classification process

On giving the classifier an input I, the following steps are performed to calculate the
output: The probability of I is calculated for all HMMs contained in the classifier:

1. I is translated into a sequence of observation symbols O = O1 , O2 , ..., On. Here,
I is a string of characters and the output of the classifier is a word. Every character
in the string is simply translated to the corresponding observation symbol. There
are also special observations for the start and end states. This is explained in
more detail in the following section.

2. The Forward algorithm/Viterbi algorithm is then used to calculate the probability
of O given the HMM.

3. The output symbol with the highest probability in the previous step is returned
as output.

The following main parameters must be supplied when a classifier is created:

1. The set of possible output symbols and corresponding training examples.

9



2. The initialization method that should be used by the HMMs.

3. A binary variable, specifying if the training examples should be used to train the
model with the Baum-Welch training algorithm.

3.4.3 Topology

The two methods used for word classification call for two kinds of topologies for the
HMM.

Forward classifier
For the forward-classifier, a separate model for each word in the dictionary is generated.
It is natural to implement one HMM for each of the words when the vocabulary is small.
When the vocabulary is larger, this approach may have performance problems. The
initialization of the transition and emission matrices are done in such a way that the
following properties are fulfilled:

1. The beginning state start will always emit the special symbol @ and the end state
will always emit the special symbol $.

2. The beginning state start will always transition to the first normal state.

3. The ending state end always transitions back to the beginning state start.

4. All other states always transition forward to a state that has not been visited
since the last visit to start.

If the word has n letters, there will be n + 2 states in the corresponding HMM. Special
beginning and end states are included because multiple training observation sequences
are compared against one another to give the final output word classification. The
sequence is then used as input to the Baum-Welch algorithm.

Viterbi classifier
With a large vocabulary using a single HMM can be beneficial. A single model has
the additional benefit that it can learn common patterns in words such as ”ing”. The
second word classifier that is implemented, called Viterbi-classifier, uses a single HMM
for the whole vocabulary.

10



Figure 7. Topology for Viterbi classifier

The single HMM for Viterbi-classifier has states that have transitions to all other
states. It has 28 hidden states (26 for the 26 Latin letters and 2 with special emissions
and $). The transition matrix is a 28*28 matrix, which is estimated from the lexicon
analysis, using the method explain below. For example, if there are only three words
in the vocabulary: DOG, CAT and CAP. Then the probability of going from A to T is
0.5, A to P is 0.5 and A to other letters is 0. According to the parameter estimation
method just explained, the transition probability matrix only needs information from
every two successive letters in the words. The observations are the letters observed
from the character classifier or the CNN. The observation probability matrix is created
from observations when testing the character classifier. For example, if we have 10
test example images for A, and 5 of them are classified to be A, 3 to be B and 2 to
be C, then P(observation = A) = 0.5, P(observation = B) = 0.3 and P(observation
= C) = 0.2. For this example, the row for A in the probability matrix will be set to
[0.5, 0.3, 0.2, 0, 0, ..., 0].

So given the HMM described above, the classification of a string of characters can
be done in the following way:

1. Use the string as an observation sequence and apply the Viterbi-algorithm to get
the most probable sequence of states.

2. Calculate the similarity of the resulting string to all possible output words. As
similarity measure we use the hamming distance.

3. Return the most similar word.

3.5 Initial Parameter Selection

Hidden Markov Models can be efficiently trained by the Baum-Welch algorithm, which
is an iterative process for estimating parameters for HMMs. As an iterative algorithm,
BW starts from an initial model and estimates transition and emission probability

11



parameters by computing expectations via the Forward-Backward algorithm. The al-
gorithm sums over all paths containing a given event until convergence is reached.
Since the Baum-Welch algorithm is a local iterative method, the resulting HMM and
the number of required iterations depend heavily on the initial model. There are many
ways to generate an initial model, some techniques consider the training data while
others do not. The two popular initialization strategies used include, count-based and
random. The random initialization strategy assigns the values in the transition and
emission matrices to random values. For the count-based initialization the emission
matrix is assigned based on information from the training examples. The transition
matrix is then assigned so that all states get the same probability of transferring to all
reachable states. For the purpose of this project, random initialization of the HMM
model is done.

4 Results

1929 Training samples
275 Validation samples
300 Test samples

Epoch Accuracy Validation Loss Validation Accuracy
1 0.0394 3.2288 0.0909
2 0.0918 3.0668 0.0691
3 0.2297 2.2098 0.3709
4 0.4412 1.1903 0.7273
5 0.5816 1.3283 0.6182
6 0.6941 0.6312 0.8255
7 0.7403 0.5697 0.8473
8 0.7911 1.2109 0.6545
9 0.8154 0.3936 0.8800
10 0.8652 0.5317 0.8291
11 0.8766 0.4252 0.8945
12 0.8927 0.3788 0.8909

Test accuracy: 0.923333333333

12



Figure 8. Segmented Characters inputted to HMM

Figure 9. Individual Segmented Characters after change in size

The above input was recognized as the word ’SUMMER’ by the HMM, because the
given word was not in the dictionary, and SUMMER was the closest word to it.

5 Observations

We can see from the result above that the CNN after 12 epochs has a very good
validation accuracy, as well as test data accuracy which was 92%. As mentioned above,
the HMM used the entire word to help predict what word it should have been, given
it’s limited dictionary. Again, the above input was recognized as the word ’SUMMER’
by the HMM, because the given word was not in the dictionary, and SUMMER was
the closest word to it. It was also observed that the segmentation, and thus accuracy
was highly dependent on the pre-processing.

5.1 Limitations

Even though the CNN has a very high accuracy, it is important to note that the test
data was not very noisy. Hence, the CNN is not yet equipped to handle very noise
inputs (such as messy handwriting, and connected words). The HMM’s output could
not be given over a wide range due to dataset limitations. The dataset given was purely
characters, and we have made our own input images to test the HMM as can be seen in
the above example. These images are not very extensive, hence not note-worthy. Also,
while the dataset does not have a wider dictionary, random word inputs will not be
recognized correctly. The output accuracy is highly dependent on the pre-processing
and fixed parameters. Thus, estimating parameters dynamically would be more useful.

13



6 Conclusions

After many experiments, we find that CNN is ideal to do handwriting recognition given
a proper and diverse dataset. We also realize the many limitations of our system,
and how they affect the final output. We ascertain that an HMM is very useful to
help predict words given some segmentation errors and even spelling errors and the
combination of the CNN and HMM will possibly lead to great results with better
datasets as well.

7 References

1 - Fabian Alenius, Kjell Winblad and Chongyang Sun, UPPSALA UNIVERSITY
2 - Scale space technique for word segmentation in Handwritten Document - R. Man-
matha and Nitin Srimal
3 - R. Buse, Z. Q. Liu, and T. Caelli, “A structural and relational approach to hand-
written word recognition.”
4 - http://yann.lecun.com/exdb/lenet/

14


	Introduction
	Dataset
	Method
	Pre-processing
	Line Segmentation
	Word Segmentation
	Slant Correction
	Character Segmentation

	Convolutional Neural Network
	Backpropagation
	Different types of layers:

	Architecture
	Hidden Markov Model
	Overview
	Classifiers
	Topology

	Initial Parameter Selection

	Results
	Observations 
	Limitations

	Conclusions
	References

